Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129865, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302012

RESUMEN

Due to marvelous sensitivity and flexibility, conductive hydrogels are popularly used as strain sensors in intelligent skin and wearable electronic devices fields. However, hydrogel tends to be destroyed after long-term use or in accident, leading to performance degradation. Herein, we developed an environmental-friendly Ti-containing conductive hydrogel. The hydrogel network was constructed via a simple two-step method with coordination reaction and amidation reaction based on a metal ion precursor from transitional coordination. The synergies of reversible metal coordination bonds and dynamic hydrogen bonds endowed the hydrogel with excellent self-healing properties (3 h, 93.66 %), tensile properties (136.46 kPa), compression properties (1.122 MPa), and anti-fatigue performance. At the same time, the hydrogel showed excellent self-adhesion, even underwater. Due to Ti4+, electrical conductivity of the hydrogel was visibly enhanced (σ = 25.64 mS·cm-1), which resulted in fast response (TS [time sensitivity] = 24.78 s-1) and short recovery time (153 ms). As a flexible strain sensor, the hydrogel with stable conductivity and high sensitivity could precisely detect and distinguish a series of human motions, even different letter pronunciations. These remarkable features make it a promising application in the fields of intelligent skin and wearable electronic devices.


Asunto(s)
Carboximetilcelulosa de Sodio , Hidrogeles , Humanos , Titanio , Conductividad Eléctrica , Enlace de Hidrógeno
2.
Aging (Albany NY) ; 16(2): 1021-1048, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38265973

RESUMEN

BACKGROUND: TFAP2A is critical in regulating the expression of various genes, affecting various biological processes and driving tumorigenesis and tumor development. However, the significance of TFAP2A in carcinogenesis processes remains obscure. METHODS: In our study, we explored multiple databases including TCGA, GTEx, HPA, cBioPortal, TCIA, and other well-established databases for further analysis to expound TFAP2A expression, genetic alternations, and their relationship with the prognosis and cellular signaling network alternations. GO term and KEGG pathway enrichment analysis as well as GSEA were conducted to examine the common functions of TFAP2A. RT-qPCR, Western Blot and Dual Luciferase Reporter assay were employed to perform experimental validation. RESULTS: TFAP2A mRNA expression level was upregulated and its genetic alternations were frequently present in most cancer types. The enrichment analysis results prompted us to investigate the changes in the tumor immune microenvironment further. We discovered that the expression of TFAP2A was significantly associated with the expression of immune checkpoint genes, immune subtypes, ESTIMATE scores, tumor-infiltrating immune cells, and the possible role of TFAP2A in predicting immunotherapy efficacy. In addition, high TFAP2A expression significantly correlated with several ICP genes, and promoted the expression of PD-L1 on mRNA and protein levels through regulating its expression at the transcriptional level. TFAP2A protein level was upregulated in fresh colon tumor tissue samples compared to that in the adjacent normal tissues, which essentially positively correlated with the expression of PD-L1. CONCLUSIONS: Our study suggests that targeting TFAP2A may provide a novel and effective strategy for cancer treatment.


Asunto(s)
Antígeno B7-H1 , Neoplasias del Colon , Factor de Transcripción AP-2 , Humanos , Carcinogénesis , Inmunoterapia , Pronóstico , ARN Mensajero/genética , Factor de Transcripción AP-2/genética , Microambiente Tumoral
3.
Carbohydr Polym ; 327: 121676, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171662

RESUMEN

In this paper, an eco-friendly versatile superabsorbent material was designed for soil improvement, and a synchronous chemical loading strategy was proposed. In this strategy, urea not only acted as fertilizer but also acted as a crosslinker to construct an alginate network. The microstructure, chemical structure, thermal stability and composition of the obtained SA/urea hydrogel were characterized in detail. Adsorption behavior and application performance in agriculture were evaluated. The results demonstrated that urea had two different conformations in the network. The SA/urea hydrogel had abundant pore structures with excellent water absorption performance. It could not only improve the water retention capacity of soil but also release nitrogen, phosphorus and potassium elements with degradation for as long as 9 weeks. Moreover, the hydrogel could promote plant growth, increase the nutritional composition of plants and inhibit the accumulation of harmful nitrate in plants. With advantages, including biodegradability, high water absorption, controllable degradation, excellent water retention, sustained NPK release and improved plant nutrition value, the SA/urea hydrogel has great potential for soil improvement in agriculture as an eco-friendly versatile water retention agent and can be expected to extend to more fields as a novel superabsorbent material.

4.
Arch Insect Biochem Physiol ; 114(3): e22048, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37602789

RESUMEN

Niemann-Pick C (NPC) disease is a neurodegenerative disorder related to cellular sterol trafficking and mutation of NPC1 gene is the main cause for this disease. The function of NPC1 have been reported in a few insects but rarely studied in hemipterans. In the present study, we investigate the function of NPC1 in a hemipteran pest, the whitefly Bemisia tabaci. It was found that B. tabaci had only one NPC1 homolog (BtNPC1), in contrast to two homologs in many other insects. BtNPC1 was ubiquitously expressed at all developmental stages and body parts of whiteflies, with the highest level in adult abdomen, and the expression of BtNPC1 was induced by cholesterol feeding. To further investigate the function of BtNPC1, leaf-mediated RNA interference experiments were carried out. Results showed that knockdown of BtNPC1 led to reduced survival of whiteflies, as well as reduced fecundity. Moreover, knockdown of BtNPC1 affected the development and metamorphosis of whitefly nymphs. Taken these together, we conclude that BtNPC1 played a crucial role in sterol-related biological processes of B. tabaci and might be used as an insecticide target for development of novel pest management approaches.

5.
Environ Sci Pollut Res Int ; 30(13): 39169-39183, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36593321

RESUMEN

The main pollution sources of heavy metals are the arbitrary discharge of industrial wastewater and waste residues, which cause serious harm to the water environment, soil environment, and human health. In this study, following the principle of waste utilization, a gel adsorbent (AA-SW-AMPS) was prepared by microwave-assisted chemical cross-linking using fir sawdust as raw material. A scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and swelling dynamic experiments were used to investigate the microstructure, reaction mechanism, and water absorption performance of AA-SW-AMPS. The N2 adsorption-desorption curve shows that the porous structure of AA-SW-AMPS creates 240.75 cm2/g of specific surface area to enable excellent heavy-metal sorption. It was determined by adsorption experiments that the optimal adsorption state was when the dosage of AA-SW-AMPS was 5 g/L, the pH of the solution was 5, the adsorption time was 45 min, and the initial heavy metal ion concentration was 250 mg/L. In addition, the adsorption mechanism was investigated using adsorption dynamics, adsorption isotherm, and Materials Studio simulation. The results show that the maximum adsorption capacities of AA-SW-AMPS for Pb(II), Cu(II), and Zn(II) were 253.49 mg/g, 237.29 mg/g, and 232.15 mg/g, respectively, and the adsorption mechanism is monolayer chemisorption. The adsorbent showed great potential in removing heavy metals from wastewater.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Plomo , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Agua/química , Adsorción , Zinc , Cinética , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier
6.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364297

RESUMEN

The frequent occurrence of crude oil spills and the indiscriminate discharge of oily wastewater have caused serious environmental pollution. The existing separation methods have some defects and are not suitable for complex oil-water emulsions. Therefore, the efficient separation of complex oil-water emulsions has been of great interest to researchers. Asymmetric wettable Janus materials, which can efficiently separate complex oil-water emulsions, have attracted widespread attention. This comprehensive review systematically summarizes the research progress of asymmetric wettable Janus materials for oil-water separation in the last decade, and introduces, in detail, the preparation methods of them. Specifically, the latest research results of two-dimensional Janus materials, three-dimensional Janus materials, smart responsive Janus materials, and environmentally friendly Janus materials for oil-water separation are elaborated. Finally, ongoing challenges and outlook for the future research of asymmetric wettable Janus materials are presented.


Asunto(s)
Purificación del Agua , Purificación del Agua/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Agua , Humectabilidad , Aceites , Emulsiones
7.
J Child Lang ; : 1-26, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36420637

RESUMEN

Previous research has shown language-specific features play a guiding role in how children develop expression of events with speech and gestures. This study adopts a multimodal approach and examines Mandarin Chinese, a language that features context use and verb serializations. Forty children (four-to-seven years old) and ten adults were asked to describe fourteen video stimuli depicting different types of causal events involving location/state changes. Participants' speech was segmented into clauses and co-occurring gestures were analyzed in relation to causation. The results show that the older the children, the greater the use of contextual clauses which contribute meaning to event descriptions. It is not until the age of six that children used adult-like structures - namely, using single gestures representing causing actions and aligning them with verb serializations in single clauses. We discuss the implications of these findings for the guiding role of language specificity in multimodal language development.

8.
Molecules ; 27(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36235046

RESUMEN

In this study, a green, highly efficient and low energy consumption preparation method of cellulose nanofiber (CNF) was developed by using agricultural and forestry waste durian rinds as raw materials. The power of ultrasonic treatment was successfully reduced to only 360 W with low molecular weight liquid DMSO. The obtained durian rind-based CNF had a diameter of 8-20 nm and a length of several micrometers. It had good dispersion and stability in water, and could spontaneously cross-link to form hydrogel at room temperature when the concentration was more than 0.5%. The microscopic morphology and compressive properties of CNF aerogels and composite cellulose aerogels prepared from durian rind-based CNF were evaluated. It was found that CNF could effectively prevent the volume shrinkage of aerogel, and the concentration of CNF had a significant effect on the microstructure and mechanical properties of aerogel. The CNF aerogel with 1% CNF exhibited a sheet structure braced by fibers, which had the strongest compression performance. The porosity of CNF aerogels was high to 99%. The compressive strength of the composite cellulose aerogel with durian rind-based CNF was effectively enhanced.


Asunto(s)
Bombacaceae , Nanofibras , Celulosa/química , Dimetilsulfóxido , Hidrogeles , Nanofibras/química , Agua
9.
Molecules ; 27(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35889287

RESUMEN

As the most advanced aerogel material, silica aerogel has had transformative industrial impacts. However, the use of silica aerogel is currently limited to the field of thermal insulation materials, so it is urgent to expand its application into other fields. In this work, silica aerogel/resin composites were successfully prepared by combining silica aerogel with a resin matrix for dental restoration. The applications of this material in the field of dental restoration, as well as its performance, are discussed in depth. It was demonstrated that, when the ratio of the resin matrix Bis-GMA to TEGDMA was 1:1, and the content of silica aerogel with 50 µm particle size was 12.5%, the composite achieved excellent mechanical properties. The flexural strength of the silica aerogel/resin composite reached 62.9546 MPa, which was more than five times that of the pure resin. Due to the presence of the silica aerogel, the composite also demonstrated outstanding antibacterial capabilities, meeting the demand for antimicrobial properties in dental materials. This work successfully investigated the prospect of using commercially available silica aerogels in dental restorative materials; we provide an easy method for using silica aerogels as dental restorative materials, as well as a reference for their application in the field of biomedical materials.


Asunto(s)
Resinas Compuestas , Dióxido de Silicio , Bisfenol A Glicidil Metacrilato , Ensayo de Materiales , Tamaño de la Partícula
10.
Cancer Sci ; 113(8): 2627-2641, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35639251

RESUMEN

Poor chemotherapy response is the main obstacle of ovarian cancer (OC) treatment. Platinum-refractory and -resistant patients are associated with a worse outcome than platinum-sensitive and partially sensitive patients, but the comprehensive similarities and differences among them are not yet clear. In this study, we analyzed the data of patients with different chemotherapy response in The Cancer Genome Atlas. We found a minority of altered genes were overlapped in refractory and resistant groups, as did the enriched pathways and Gene Ontology terms. We noticed that the neural signaling and drug metabolism enzymes were more significantly enriched and the protein-protein interaction supported these results. The transcription analysis highlighted PDX1 as the common and central transcription factor in both refractory and resistant groups. The competing endogenous RNA (ceRNA) network shared no common ceRNA pairs, indicating a major difference in noncoding RNA post-transcriptional regulation. In the end, we validated the expression, regulation, binding, and effect on chemotherapy response for selected MNX1-AS1/hsa-miR-4697-3p/HOXB13 in OC cell lines. Our study offered a novel and comprehensive insight into chemotherapy response, and potential targets for improving chemotherapy response in OC.


Asunto(s)
Proteínas de Homeodominio , MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , MicroARNs/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Environ Sci Pollut Res Int ; 29(46): 69771-69784, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35578079

RESUMEN

Aiming at the problems of complex environment and serious dust pollution in large open-pit coal yards, a dust suppression gel with a dual network structure was prepared by modifying the soluble starch and sodium alginate with iron ions. The changes of functional groups, thermal stability, and morphology structure before and after the reaction were analyzed by FTIR, TG-DSC, and SEM, and the formation mechanism of the dual network was revealed by XPS. Furthermore, the water absorption and water retention experiments proved that the dual network structure is more conducive to water retention than the single-layer network. According to molecular dynamics simulations and contact angle experiments, gel and adsorbed water molecules can approach coal dust molecules on their own to contact, wet, and combine with coal dust. The adhesion test proved that the dust suppression gel with iron ions had better adhesion to dust. The anti-freezing test shows that the dust suppression gel has good anti-freezing performance. The antifreeze test shows that the dust suppression gel still has excellent freeze-thaw resistance at the test temperature of -20℃. The mechanical property test shows that the dust suppressant gel can prevent the product from being damaged by external force. The acid and alkali resistance experiments showed that the acid and alkali resistance of the gel was improved under the condition of iron ion modification, and the flying of coal powder was effectively prevented. This research provides a new theoretical idea for coal dust control in complex environment.


Asunto(s)
Alginatos , Polvo , Alginatos/química , Carbón Mineral/análisis , Polvo/análisis , Iones , Hierro , Minerales , Polvos , Almidón , Agua
12.
Signal Transduct Target Ther ; 7(1): 3, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980884

RESUMEN

The Wnt/ß-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/ß-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/ß-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/ß-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/ß-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Wnt/genética , beta Catenina/genética
13.
Environ Res ; 207: 112623, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990610

RESUMEN

Metal-free photocatalysts for high efficient photocatalytic degradation of pollutants have attracted growing concern in recent years. Herein, relying on density functional theory (DFT) calculations, boron and phosphorus doped C2N layers were explored for the potential of utilization as photocatalysts for 4, 5-dichloroguaiacol (4, 5-DCG) removal. Our computations revealed that the adsorption energy of 4, 5-DCG on B@N-doped C2N layers were 26.56 kcal mol-1, and the ΔG≠ of initial reactions of 4, 5-DCG with OH were also reduced onto the B@N-doped C2N substrates. The band gap of B@N-doped C2N was 2.27 eV. The obtained results showed that the doping of boron atom into C2N layer narrows bandgap, and retains well catalytic performance and adsorption properties. Hence, B@N-doped C2N layer is a promising photocatalyst for organic pollutants removal. Possible degradation pathways of 4, 5-DCG and aquatic toxicity assessment during degradation were also carried out. Products with higher toxicity would be formed and the transformation products were still toxic to three nutrient levels of aquatic organisms (green algae, fish, and daphnia).


Asunto(s)
Luz , Nitrilos , Adsorción , Catálisis
14.
J Environ Manage ; 297: 113221, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293675

RESUMEN

Heavy metal water pollution is an urgent global problem to be addressed. Copper ions are common toxic heavy metal pollutants in wastewater. In order to remove the excessive copper ions in wastewater, in this study, chicken bone charcoal was modified by sodium dodecyl sulfonate and combined with magnetic nanoparticles prepared with ferric chloride hexahydrate and ferrous sulfate heptahydrate to produce a high efficiency adsorbent. The characterization of the magnetically modified bone charcoal was analyzed by scanning electron microscopy, surface and porosity analyses, FTIR and thermogravimetric analysis. The optimal adsorption conditions of magnetically modified bone charcoal for Cu2+ were obtained through batch experiments. The highest removal rate and adsorption capacity of Cu2+ was 99.98% and 15.057 mg/g, respectively, when the pH was 3.0, adsorbent dosage was 0.2 g, initial concentration of the Cu2+ solution was 50 mg/L, and temperature was 25 °C. The adsorption process fitted well with the Langmuir isotherm and the pseudo-second-order kinetic model. The regeneration experiment indicated that M-SDS-BC-500 maintained a high removal rate after five repetitions. The results suggest that the adsorbent has wide application prospects.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cobre/análisis , Concentración de Iones de Hidrógeno , Iones , Cinética , Fenómenos Magnéticos , Minería , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...